The Binomial Formula

The binomial formula is extremely useful for a variety of calculations. It follows a nice observation which follows closely from computing what results when we expend the expresssion (a+b)n(a+b)^n for various values of nn.

We have that:

(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3\begin{aligned}\left(a+b\right)^{0} & =1\\ \left(a+b\right)^{1} & =a+b\\ \left(a+b\right)^{2} & =a^{2}+2ab+b^{2}\\ \left(a+b\right)^{3} & =a^{3}+3a^{2}b+3ab^{2}+b^{3} \end{aligned}

We can rewrite this in a way that might seem a bit odd but will serve us well:

(a+b)0=1a0b0(a+b)1=1a1b0+1a0b1(a+b)2=1a2+2a1b1+1b2(a+b)3=1a3+3a2b1+3a1b2+1b3\begin{aligned}\left(a+b\right)^{0} & =1\cdot a^{0}b^{0}\\ \left(a+b\right)^{1} & =1\cdot a^{1}b^{0}+1\cdot a^{0}b^{1}\\ \left(a+b\right)^{2} & =1\cdot a^{2}+2\cdot a^{1}b^{1}+1\cdot b^{2}\\ \left(a+b\right)^{3} & =1\cdot a^{3}+3\cdot a^{2}b^{1}+3\cdot a^{1}b^{2}+1\cdot b^{3} \end{aligned}

Is this starting to look familiar? What about if we remove all the annoying aa's and bb's and plus signs?

11 11 2 11 3 3 1\begin{aligned} & 1\\ & 1\ 1\\ & 1\ 2\ 1\\ & 1\ 3\ 3\ 1 \end{aligned}

Of course! These are the first few lines of Pascal's triangle!

In other words, we can rewrite the last line of the expression above as:

(a+b)3=(30)a3+(31)a2b1+(32)a1b2+(33)b3\left(a+b\right)^{3}={3 \choose 0}\cdot a^{3}+{3 \choose 1}\cdot a^{2}b^{1}+{3 \choose 2}\cdot a^{1}b^{2}+{3 \choose 3}\cdot b^{3}

How does this happen? Well, remember that when we expend (a+b)3(a+b)^3 we actually go over each "copy" of (a+b)(a+b) and choose either aa or bb. "Choose", here's that word again. Say we chose bb exactly two out of the three times, then we got the monomial ab2a\cdot b^2. How many ways are there to choose bb two out of the three times? Obviously (32){3 \choose 2}.

Similarly, if we ask ourselves what is the coefficient of ankbka^{n-k}\cdot b^k in (a+b)n(a+b)^n. That is, how many different ways are there to choose bb in exactly kk of the nn copies of (a+b)(a+b)? We know very well that the answer is (nk){n \choose k}.

Putting this all together, we get the remarkable formula known as Newton's binomial formula:

(a+b)n=(n0)an+(n1)an1b++(nk)ankbk++(nn)bn=k=0n(nk)ankbk\begin{aligned}\left(a+b\right)^{n} & ={n \choose 0}a^{n}+{n \choose 1}a^{n-1}\cdot b+\ldots+{n \choose k}a^{n-k}b^{k}+\ldots+{n \choose n}b^{n}\\ & =\sum_{k=0}^{n}{n \choose k}a^{n-k}b^{k} \end{aligned}

We will revisit this formula when we discuss probabilities in the next part of the appendix, but lets see a nice example of how it can be used to prove fun stuff.

For example, what do you think should be the alternating sum of the binomial coefficients:

(n0)(n1)+(n2)(n3)++(1)n(nn){n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}+\ldots+\left(-1\right)^{n}{n \choose n}

Well, if nn is odd we can use the fact that (nk)=(nnk){n \choose k} = {n \choose n-k} and "pair them up" to get

(n0)(n1)+(n2)(n3)+(nn)=((n0)(nn))+((n1)(nn1))++((nn/2)(nn/2))=0\begin{aligned} & {n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}+\ldots-{n \choose n}\\ & =\left({n \choose 0}-{n \choose n}\right)+\left({n \choose 1}-{n \choose n-1}\right)+\ldots+\left({n \choose \left\lfloor n/2\right\rfloor }-{n \choose \left\lceil n/2\right\rceil }\right)\\ & =0 \end{aligned}

For those who do not know these notations, for any xx, we use x\left\lfloor x\right\rfloor and x\left\lceil x\right\rceil to denote rounding it down or up respectively to the nearest integer.

But that won't work when nn is even. So what can we do? In fact, we can prove it for all cases (nn even or odd) in one fell swoop without this ugly "pairing up". We just need to rewrite the sum a little differently:

(n0)(n1)+(n2)(n3)+(nn)=k=0n(1)k(nk)=k=0n1nk(1)k(nk)\begin{aligned} & {n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}+\ldots-{n \choose n}\\ & =\sum_{k=0}^{n}\left(-1\right)^{k}{n \choose k}\\ & =\sum_{k=0}^{n}1^{n-k}\left(-1\right)^{k}{n \choose k} \end{aligned}

which is exactly the binomial formula with a=1a=1 and b=1b=-1!

We thus get:

k=0n1nk(1)k(nk)=(1+(1))n=0\sum_{k=0}^{n}1^{n-k}\left(-1\right)^{k}{n \choose k}=\left(1+\left(-1\right)\right)^{n}=0

Exercise: Prove that the sum of nnth binomial coefficients (n0)+(n1)++(nn){n \choose 0} + {n \choose 1} + \ldots + {n \choose n} is exactly 2n2^n. Why is this answer expected?

Last updated